Recents in Beach

NCERT solution for class 10th maths: chapter-2 POLYNOMIALS (Ex.2.2)


Question-1: Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.
Solution: (i)  x² - 2x - 8

 x² -2-8=0
 x² -(4-2)x-8=0   
 x² -4x+2x-8=0       
(x² -4x)+(2x-8) =0
x(x-4) + 2(x-4) =0
(x+2) (x-4)=0
these are the factors of the equation.But we have to find the value of x.

(x+2) = 0     and  (x-4)=0
x = -2                    x= 4
Therefore zeroes of polynomial (x²-2x-8) are 4 and -2.
---------------------------------------------------------------------------------------------------------------
Now, second part of question is verify the relationship.

Sum of zeroes of given equation =(-2+4) = 2





Now,
Product of zeroes of given equation = (-2 x 4) = -8






 Hence the relationship is verified.
*********************************************************************************
(ii) 4s² - 4s +1

4s² - 4s +1 = 4s² -4s +1
                  = 4s² -(2+2)s +1
                  = 4s² -2s-2s +1
                  = (4s² -2s) - (2s +1)    
                  = 2s(2s-1) -1(2s-1)      
                  = (2s-1) (2s-1)
 So, factors of equation are (2s-1), (2s-1)
now find the value of s
                  2s-1= 0                      2s-1= 0
                   2s= 1                            2s=1
                     s= 1/2                           s= 1/2
                                                         
So, zeroes of polynomial (4s² -4s +1) are  1/2 and   1/2
                                                               
Now, verification








----------------------------------------------------------------------
Now,

 Hence the relationship is verified.
*********************************************************************************
(iii) 6x² -3 -7x 

6x² -7x -3         
= 6x² -(9-2)x -3
= 6x² -9x+2x -3
= (6x² -9x)+(2x -3)
= 3x(2-3) +1(2x -3)  
= (3x +1) (2x -3)         
Now, find the value of
 3x +1=0                                   2x -3= 0
     3x = -1                                    2x 3
       x = -1/3                                   x = 3/2 
So,zeroes of polynomial (6x² -7x -3) are -1/3 and 3/2.

Now, verification






--------------------------------------------------
Now,







 Hence the relationship is verified.
*********************************************************************************
(iv) 4u²+8u

4u²+8u = 4u(u+2)
so, here factors of this equation are 4u and (u+2)
Now, we will find the value of u.
4u =0           u+2=0
  u=0/4         u= -2
  u=0        
So, zeroes of polynomial (4u²+8u) are 0 and -2.

Now, verification
                     











Hence the relationship is verified.
*********************************************************************************
(v) t² - 15

t² - (√15)²

 t² - (√15)² = (t-√15)(t+√15)  
Now find the value of t
t-√15 = 0                         t+√15 = 0
t = √15                             t = -√15
So,zeroes of polynomial (t² - 15) are √15 and -√15 .

Now, verification

Sum of zeroes of given equation = -√15 +√15  = 0


Now,





Hence the relationship is verified.
*********************************************************************************
(vi) 3x² -x -4

3x²-x-4 = 3x² -(4-3)-4
             = 3x² -4x+3-4
             = x(3x-4)+1(3x-4) 
             = (x+1)(3x-4)

Now find the value of x
x+1 = 0                      3x -4 = 0
    x = -1                     3x = 4
                                    x = 4/3
So,zeroes of polynomial (3x² --4) are -1 and 4/3.

Now, verification












Hence the relationship is verified.
*********************************************************************************
Question-2: Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.
Solution: (i)  1/4 , -1

ax²+bx+c=0
First Method        
  ax²+bx+c=0
     






Now,
Sum of zeroes = -b/a = -1/4
Product of zeroes = c/a = -4/4
means a= 4, b=-1 and c=-4
 ax²+bx+c
Quadratic polynomial =  4x²-1x-4 or  4x² --4

Second method with formula 
Sum of zeroes (𝛂+𝜷) = 1/4
Product of zeroes (𝛂 x 𝜷) = -1
formula for equation = x²-(𝛂+𝜷)x+(𝛂 x 𝜷)   
                                  = x²- +(-1)
                                           4

So, quadratic equation is 4x² --4.

*********************************************************************************
(ii)2, 1/3

Sum of zeroes (𝛂+𝜷) = 2
Product of zeroes (𝛂 x 𝜷) = 1/3
formula for equation = x² -(𝛂+𝜷)+(𝛂 x 𝜷)
                                   = x²-(2)x+ 1/

 So, quadratic equation is 3x² - 32x +1

*********************************************************************************
(iii)0, 5                              
 Sum of zeroes (𝛂+𝜷) = 0
Product of zeroes (𝛂 x 𝜷) = √5
formula for equation = x² -(𝛂+𝜷)+(𝛂 x 𝜷)
                                  =x² -(0)x√5
                                  x² -0 x x + √5
So, quadratic equation is  x² + 5
*********************************************************************************
(iv) 1, 1
 Sum of zeroes (𝛂+𝜷) = 1
Product of zeroes (𝛂 x 𝜷) = 1
formula for equation = x² -(𝛂+𝜷)+(𝛂 x 𝜷)
                                  =x² -1x+ 1
                                  x² -x1
So, quadratic equation is x² -+1
*********************************************************************************
(v) -1/4, 1/4
Sum of zeroes (𝛂+𝜷) = -1/4
Product of zeroes (𝛂 x 𝜷) = 1/4
                               formula for equation = x² -(𝛂+𝜷)+(𝛂 x 𝜷)

So, quadratic equation is 4x² +x +1.

*********************************************************************************
(vi) 4, 1
Sum of zeroes (𝛂+𝜷) = 4
Product of zeroes (𝛂 x 𝜷) = 1
formula for equation = x² -(𝛂+𝜷)+(𝛂 x 𝜷)
                                  =x² -4x1
                                 
So, quadratic equation is x² -4x +1
*********************************************************************************




















0 Comments:

Post a Comment