Recents in Beach

NCERT solution for class 10th maths: chapter-3 LINEAR EQUATIONS (Ex.3.2)



Question-1: Form the pair of linear equations in the following problems, and find their solutions graphically.
(i) 10 students of Class X took part in a Mathematics quiz. If the number of girls is 4 more than the number of boys, find the number of boys and girls who took part in the quiz.

Solution:- 

Let the number of girls be x and the number of boys be y.

According to the question, the algebraic representation is
x + y = 10
x – y = 4

For x + y = 10,


For x – y = 4,







From the figure, it can be observed that these lines intersect each other at point (7, 3).
Therefore, the number of girls and boys in the class are 7 and 3 respectively.
-----------------------------------------------------------------------------------------------------
(ii) 5 pencils and 7 pens together cost Rs 50, whereas 7 pencils and 5 pens together cost Rs 46. Find the cost of one pencil and that of one pen.

Let the cost of 1 pencil be Rs x and the cost of 1 pen be Rs y.
 "5 pencils and 7 pens together cost Rs 50" 
 5 pencils(5x) + 7 pens(7y=50

 "7 pencils and 5 pens together cost Rs 46. 
7 pencils(7x) + 5 pens(5y=46

According to the question, the algebraic representation is
5x + 7y = 50
7x + 5y = 46

For 5x + 7y = 50,

7x + 5y = 46,





From the figure, it can be observed that these lines intersect each other at point (3, 5).
Therefore, the cost of a pencil and a pen are Rs 3 and Rs 5 respectively.
****************************************************************************
Question-2: On comparing the ratios a1/a2 , b1/b2 and c1/c2. find out whether the lines representing  the following pair of linear equations intersect at a point, are parallel or coincident.
Solution:-

(i) 5x – 4y + 8 = 0
7x + 6y – 9 = 0
Comparing these equation with
a1x + b1y + c1 = 0
a2x + b2y + c2 = 0

We get,
a1 = 5,   b1 = -4, and   c1 = 8
a2 = 7,   b2 = 6   and   c2 = -9

a1 /a2 = 5/7,
b1 /b2 = -4/6 or -2/3(after cutting)
c1 /c2 = 8/-9


5/7 ≠ -2/3
Hence, a1/a2 ≠ b1/b2
Therefore, both are intersecting lines at one point(intersecting lines).
---------------------------------------------------------------------------------------
(ii) 9x + 3y + 12 = 0
18x + 6y + 24 = 0
Comparing these equations with
a1x + b1y + c1 = 0
a2x + b2y + c2 = 0
We get,
a1 = 9,    b1 = 3, and  c1 = 12
a2 = 18,  b2 = 6  and  c2 = 24

a1 /a2 = 9/18    = 1/2 (after cutting)
b1 /b2 = 3/6      = 1/2 (after cutting)
c1 /c2 = 12/24  = 1/2 (after cutting)

Hence, a1/a2 = b1/b2 =c1/c2

Therefore, both lines are coincident.
----------------------------------------------------------------------------------------------
(iii) 6x – 3y + 10 = 0
2x – y + 9 = 0
Comparing these equations with
a1x + b1y + c1 = 0
a2x + b2y + c2 = 0

We get
a1 = 6,   b1 = -3,  and   c1 = 10
a2 = 2,   b2 = -1   and   c2 = 9

a1 /a2  = 6/2   = 3/1 (after cutting)
b1 /b2  = -3/-1 = 3/1 (after cutting)
c1 /c2   =12/24 = 1/2 (after cutting)

Hence, a /a = b /b ≠c /c
Therefore, both lines are parallel.
----------------------------------------------------------------------------------------------------
Question-3: On comparing the ratios a1/a2 , b1/b2 and c1/c2. find out whether the following pair of linear equations are consistent, or inconsistent.
Solution:-

i) 3x + 2y = 5 ; 
2x – 3y = 7














These linear equations have unique solution.
Hence, the pair of linear equations is consistent.
----------------------------------------------------------------------------------------------
(ii) 2x – 3y = 8 
      4x – 6y = 9















here we have no possible solution.
Hence, the pair of linear equations is inconsistent.
-------------------------------------------------------------------------------------------------
(iii) 3/2x + 5/3y = 7 
           9x – 10y = 14

here we have a unique solution.
Hence, the pair of linear equations is consistent.
----------------------------------------------------------------------------------------------------
(iv) 5x – 3y = 11
 –10x + 6y = –22

















here we have infinite number of solutions.
Hence, the pair of linear equations is consistent.
-----------------------------------------------------------------------------------------------------
(v) 4/3x + 2y =8 ; 
     2x + 3y = 12



















here we have infinite number of solutions.
Hence, the pair of linear equations is consistent.
-------------------------------------------------------------------------------------------------------
Question-4: which of the following pairs of linear equations are consistent/inconsistent? If consistent ,obtain the solution graphically.
Solution:- 
(i) x + y = 5
   2x + 2y =10

  a1 = 1 , b1 = 1 , c1 = 5
  a2 = 2 , b2 = 2 , c2 = 10
here we have infinity many solutions.
So, equations are consistent.
Now, we have to solve it graphycally.

For x + y = 5

For 2+ 2y = 10

Now create a table using these values.




(ii) x - y = 8
   3x - 3y =16

  a1 = 1 , b1 = -1 , c1 = 8
  a2 = 3 , b2 = -3 , c2 = 16


given equations are parallel lines 
so there is no solution. 
It means equations are inconsistent.

(iii) 2x + y - 6 = 0
       4x - 2y - 4 = 0
            or
       2x + y = 6 

       4x - 2y = 4 


  a1 = 2 , b1 = 1 , c1 = 6
 a2 = 4 , b2 = -2 , c2 = 4

















here we have unique solutions.
So, equations are consistent.
Now, we have to solve it graphycally
For, 2x + y = 6


For, 4x - 2y = 4
Now create table using these values.
Now plot these values on graph


(iv) 2x - 2y - 2 = 0
       4x - 4y - 5 = 0
            or
       2x - 2y = 2
       4x - 4y = 5

  a1 = 2 , b1 = -2 , c1 = 2
  a2 = 4 , b2 = -4 , c2 = 5

here the given equations are parallel lines.
So, the equations are inconsistent.
-------------------------------------------------------------------------------------------------------------------------
Question-5: Half the perimeter of a rectangular garden, whose length is 4 m more than its width, is 36m. Find the dimensions of the garden.                                                                                          

Solution:  
Let the length of the garden be x.
and the width of the garden be y.

Half the perimeter of a rectangular garden is 36m.






length is 4 m more than its width  

length = width + 4
x = y + 4    or
x - y = 4  

So, we have two equations:
x + y = 36 ..............(i)
x - y = 4   ...............(ii)

For first equation
x + y = 36




For 
x - y = 4




now make tables

Now put all the values on graph

here both lines intersect each other at point (20,16). hence x = 20 and y = 16 is the solution of given linear equations.
Therefore, Length of the garden = 20 and Breadth of the garden = 16.
-------------------------------------------------------------------------------------------------------------------------
Question-6: Given the linear equation 2x + 3y - 8 = 0, write another linear equation in two variables such that the geometrical representation of the pair so formed is:
(i) intersecting lines
(ii) parallel lines
(iii) coincident lines
Solution-:
(i) intersecting lines


 



first equation is : 2x + 3y - 8 = 0

so if we assume second  equation as 3x + 2y + 4 = 0 then it will satisfy the condition
 






(ii)Parallel lines








so we assume 2x + 3y - 12 = 0 as second equation 









(iii)Coincident lines


here we assume 4x + 6y - 16 = 0 as second equation











------------------------------------------------------------------------------------------------------------------------

Question-7: Draw the graphs of the equations x -y + 1 = 0 and 3x + 2y -12 = 0. Determine the coordinates of the vertices of the triangle formed by these lines and the x-axis and shade the triangular region.
Solution-: 
For equation x - y + 1 = 0 or x - y = -1



For equation 3x +2y -12 = 0 or 3x + 2y = 12




now we prepare table with these values


put these values on graph


Here lines of equations formed a triangle with the help of x-axis. 
So, the coordinates of the triangle ABC are:
A (2,3)
B (-1,0)
C (4,0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             
--------------------------------------------------------------------------------------------------------------------------


0 Comments:

Post a Comment